Полное изучение этой темы выходит за рамки данного текста. Цель этого раздела — просто указать на то, что существует такой метод, и дать пример его использования. В то время как основная цель исследовательского факторного анализа заключается в определении (путем вращения факторов и достижения простой структуры) количества и природы факторов, которые лежат в основе данных, конфирматорный факторный анализ (как следует из его названия) проверяет гипотезы или, скорее, позволяет пользователю выбрать между несколькими конкурирующими гипотезами, описывающими структуру данных. Например, предположим, вас заинтересовало использование опросника, измеряющего отношение к питанию. В результате обзора литературы вы можете установить, что в части предшествующих исследований утверждается, что 10 из 20 заданий формируют один фактор, а оставшиеся 10 заданий формируют другой фактор, и корреляция этих факторов равна 0,4. Другая часть исследований с применением того же теста может указывать на то, что все 20 заданий теста формируют один фактор. Принципиально важно узнать, которое из этих утверждений правильно. В результате первого у каждого человека будут вычислены две оценки, в то время как второе будет приводить только к одной оценке. Для того чтобы определить, какая из этих конкурирующих моделей лучше всего соответствует данным, можно использовать конфирматорный факторный анализ.

Для конфирматорного факторного анализа можно использовать модели либо исследовательского факторного анализа, либо метода главных компонент. Однако почти все исследования базируются на моделях исследовательского факторного анализа, где устаналиваются общности каждой переменной. В действительности можно выполнить иерархический факторный анализ и проверить огромный диапазон моделей, используя эту методику. Хорошее описание конфирматорного факторного анализа и источника его происхождения — моделирования с помощью линейных структурных уравнений дается, в частности, в работах Лонга (Long, 1983), Лоелина (Loehlin, 1987) и Комрея и Ли (Comrey, Lee, 1992, ch. 12, 13). Клайн (Kline, 1994) и Чайлд (Child, I990) предлагают более простое введение в эту проблему.

Ряд компьютерных программ .был написан для выполнения конфирматорного факторного анализа. Наиболее известная из них — LISREL — разработана Карлом Йорескогом, статистиком, который изобрел этот метод. EQS (Bentler, 1989) — другая программа, которая, по-видимому, проще для использования, чем LISREL. Поскольку конфирматорный факторный анализ — одна из простейших форм моделирования с помощью линейных структурных уравнений, любая программа такого типа должна выполнять этот анализ,

Конфирматорный факторный анализ рассматривает базисные данные (тестовые оценки, ответы на задания теста, физиологические показатели и т.д.) как вызванные или обусловленные одним (или более) фактором (часто называемым «латентной переменной»). Таким образом, может быть составлен ряд уравнений, каждое из которых предположительно показывает, какой фактор (факторы) влияет на какую переменную (переменные).

Например, предположим, мы постулируем наличие двух факторов — общего интеллекта (g) и тестовой тревоги (ТА). Предположим также, что оценки по некоему тесту (тест 1) находятся яод влиянием обоих этих факторов, но влияние общего интеллекта

больше, чем влияние тестовой тревоги. Мы можем представить это в виде простого уравнения типа:

Тест 1 - 0,8 х g + 0,1 х ТА + уникальная дисперсия.

Числа 0,8 и 0,1 показывают степень связи между переменными и каждым фактором — факторные нагрузки. Каждое из этих чисел может быть:

• определено непосредственно в виде числа (как в приведенном выше примере);

• установлено с помощью компьютерной программы;

• принято равным другим величинам, которые уже установлены. Например, можно считать, что все тесты находятся под влиянием тестовой тревоги в равной, но неизвестной степени. (Такая возможность выбора на практике может быть проблематичной.)

В конфирматорном факторном анализе обычно уравнение пишется для каждой переменной, показывая, какой фактор (или факторы) предположительно влияет на показатели по этой переменной, хотя, как правило, не устанавливается размер нагрузок. Любые факторные нагрузки, которые не определены, принимаются равными 0. Необходимо указать также на то, что дисперсия каждого фактора равна 1,0. Затем компьютерная программа устанавливает наилучшие возможные значения для каждой из нагрузок и также вычисляет статистики, показывающие, насколько полно постулируемая структура соответствует реальным данным. Обычная практика состоит в том, чтобы попытаться применить несколько различных моделей и выбрать одну, которая дает наибольшее соответствие, т.е. ту, которая лучше всего подтверждается данными.

Страницы: 1 2 3

Смотрите также

Способы познания
Давайте задумаемся над чем-нибудь, что мы считаем безусловно верным. Это может быть нечто совсем простое, вроде мысли о том, что сад лучше поливать утром, а не вечером, или нечто сложное, как, нап ...

Оценка наблюдений
Исследователь, проводящий наблюдения, должен быть готов к возникновению некоторых проблем, в том числе проблемы недостаточного контроля, к появлению внесенного наблюдателем искажения, к проблеме р ...

Основные черты экспериментальных исследований
Со времен Вудвортса психологи рассматривают эксперимент как упорядоченное исследование, в ходе которого исследователь непосредственно изменяет некий фактор (или факторы), поддерживает остальные не ...