Геометрический подход к факторному анализу
Чайлд (Child, 1990) показывает, что можно представить корреляционные матрицы в геометрическом выражении. Переменные изображаются в виде векторов равной длины, берущих начало в одной точке. Эти векторы располагаются таким образом, что корреляции между переменными представляют значения косинусов углов между ними. Косинус угла — это тригонометрическая функция, которую можно либо найти в таблицах, либо вычислить непосредственно с помощью простейшего карманного калькулятора. Вам не нужно знать, что означают косинусы, достаточно знать, где их найти. В табл. 14.3 приводятся несколько значений косинусов углов, что дает общее представление о них. Следует помнить, что в том случае, когда угол между двумя векторами маленький, значение косинуса будет большим и положительным, когда два вектора находятся под прямым углом друг к другу, корреляция (косинус) равна нулю. Когда два вектора направлены в противоположные стороны, корреляция (косинус) будет отрицат тельной.
Это лишь небольшой шаг к пониманию геометрического выражения всей корреляционной матрицы. Вектор проводится на любом месте страницы и представляет одну из переменных, неважно какую именно. Другие переменные изображаются с помощью других векторов равной длины, причем все они исходят из той же точки, что и первый вектор.
Таблица 14.3
Таблица косинусов для графического изображения корреляции между переменными
Угол (в градусах) |
Косинус угла |
0 |
1,000 |
15 |
0,966 |
30 |
0,867 |
45 |
0,707 |
60 |
0,500 |
75 |
0,259 |
90 |
0,000 |
120 |
-0,500 |
150 |
-0,867 |
180 |
-1,000 |
210 |
-0,867 |
240 |
-0,500 |
270 |
0,000 |
300 |
0,500 |
330 |
0,867 |
Углы между переменными, по договоренности, измеряются в направлении, задаваемом направлением движения часовой стрелки. Переменные, между которыми имеются большие положительные корреляции, располагаются близко друг к другу, поскольку табл. 14.3 показывает, что большие корреляции (или косинусы) соответствуют маленьким углам между векторами. Векторы высоко коррелирующих переменных имеют одно и то же направление; переменные, имеющие высокие отрицательные корреляции друг с другом, обращены в противоположные стороны, а векторы переменных, которые не коррелируют между собой, указывают на совершенно разные направления. На рис. 14.1 приводится простой пример. Корреляции между переменными VI и V2 должны быть равны 0, и это выражается двумя векторами равной длины, выходящими из одной точки, но под прямым углом друг к другу (90°), как изображено в табл. 14.3. Корреляция между VI и V3 равна 0,5, а корреляция между V2 и V3 составляет 0,867, поэтому переменная V3 располагается, как показано на рисунке.
Смотрите также
Проблемы искажения
Поскольку в психологических исследованиях экспериментаторы, а обычно и испытуемые,
— это люди, то есть вероятность появления некоторого «искажения», попытки предугадать,
что должно произойти в ход ...
Упражнения
В дополнение к заданиям для повторения в конце каждой главы приводятся
упражнения. Они представляют собой вопросы, побуждающие вас думать так, как это
делают психологи-исследователи, и применять з ...
Валидность экспериментальных исследований
В главе 4 было введено понятие валидности в применении к измерениям. Этот термин
также применяется к эксперименту в целом. Так же как измерение считается валидным,
если измеряется именно то, что п ...